Serveur d'exploration sur les effecteurs du phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.

Identifieur interne : 000252 ( Main/Exploration ); précédent : 000251; suivant : 000253

Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.

Auteurs : Takashi Yaeno [Japon] ; Hua Li ; Angela Chaparro-Garcia ; Sebastian Schornack ; Seizo Koshiba ; Satoru Watanabe ; Takanori Kigawa ; Sophien Kamoun ; Ken Shirasu

Source :

RBID : pubmed:21821794

Descripteurs français

English descriptors

Abstract

The oomycete pathogen Phytophthora infestans causes potato late blight, one of the most economically damaging plant diseases worldwide. P. infestans produces AVR3a, an essential modular virulence effector with an N-terminal RXLR domain that is required for host-cell entry. In host cells, AVR3a stabilizes and inhibits the function of the E3 ubiquitin ligase CMPG1, a key factor in host immune responses including cell death triggered by the pathogen-derived elicitor protein INF1 elicitin. To elucidate the molecular basis of AVR3a effector function, we determined the structure of Phytophthora capsici AVR3a4, a close homolog of P. infestans AVR3a. Our structural and functional analyses reveal that the effector domain of AVR3a contains a conserved, positively charged patch and that this region, rather than the RXLR domain, is required for binding to phosphatidylinositol monophosphates (PIPs) in vitro. Mutations affecting PIP binding do not abolish AVR3a recognition by the resistance protein R3a but reduce its ability to suppress INF1-triggered cell death in planta. Similarly, stabilization of CMPG1 in planta is diminished by these mutations. The steady-state levels of non-PIP-binding mutant proteins in planta are reduced greatly, although these proteins are stable in vitro. Furthermore, overexpression of a phosphatidylinositol phosphate 5-kinase results in reduction of AVR3a levels in planta. Our results suggest that the PIP-binding ability of the AVR3a effector domain is essential for its accumulation inside host cells to suppress CMPG1-dependent immunity.

DOI: 10.1073/pnas.1106002108
PubMed: 21821794
PubMed Central: PMC3167543


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.</title>
<author>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Science Center and Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Science Center and Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Hua" sort="Li, Hua" uniqKey="Li H" first="Hua" last="Li">Hua Li</name>
</author>
<author>
<name sortKey="Chaparro Garcia, Angela" sort="Chaparro Garcia, Angela" uniqKey="Chaparro Garcia A" first="Angela" last="Chaparro-Garcia">Angela Chaparro-Garcia</name>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Koshiba, Seizo" sort="Koshiba, Seizo" uniqKey="Koshiba S" first="Seizo" last="Koshiba">Seizo Koshiba</name>
</author>
<author>
<name sortKey="Watanabe, Satoru" sort="Watanabe, Satoru" uniqKey="Watanabe S" first="Satoru" last="Watanabe">Satoru Watanabe</name>
</author>
<author>
<name sortKey="Kigawa, Takanori" sort="Kigawa, Takanori" uniqKey="Kigawa T" first="Takanori" last="Kigawa">Takanori Kigawa</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21821794</idno>
<idno type="pmid">21821794</idno>
<idno type="doi">10.1073/pnas.1106002108</idno>
<idno type="pmc">PMC3167543</idno>
<idno type="wicri:Area/Main/Corpus">000244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000244</idno>
<idno type="wicri:Area/Main/Curation">000244</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000244</idno>
<idno type="wicri:Area/Main/Exploration">000244</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.</title>
<author>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Science Center and Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Plant Science Center and Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa</wicri:regionArea>
<wicri:noRegion>Kanagawa</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Hua" sort="Li, Hua" uniqKey="Li H" first="Hua" last="Li">Hua Li</name>
</author>
<author>
<name sortKey="Chaparro Garcia, Angela" sort="Chaparro Garcia, Angela" uniqKey="Chaparro Garcia A" first="Angela" last="Chaparro-Garcia">Angela Chaparro-Garcia</name>
</author>
<author>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
</author>
<author>
<name sortKey="Koshiba, Seizo" sort="Koshiba, Seizo" uniqKey="Koshiba S" first="Seizo" last="Koshiba">Seizo Koshiba</name>
</author>
<author>
<name sortKey="Watanabe, Satoru" sort="Watanabe, Satoru" uniqKey="Watanabe S" first="Satoru" last="Watanabe">Satoru Watanabe</name>
</author>
<author>
<name sortKey="Kigawa, Takanori" sort="Kigawa, Takanori" uniqKey="Kigawa T" first="Takanori" last="Kigawa">Takanori Kigawa</name>
</author>
<author>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
</author>
<author>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Motifs (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phosphatidylinositol Phosphates (metabolism)</term>
<term>Phytophthora infestans (pathogenicity)</term>
<term>Plant Immunity (MeSH)</term>
<term>Protein Folding (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Ubiquitin-Protein Ligases (physiology)</term>
<term>Virulence Factors (chemistry)</term>
<term>Virulence Factors (metabolism)</term>
<term>Virulence Factors (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteurs de virulence ()</term>
<term>Facteurs de virulence (métabolisme)</term>
<term>Facteurs de virulence (physiologie)</term>
<term>Immunité des plantes (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Motifs d'acides aminés (MeSH)</term>
<term>Phosphates phosphatidylinositol (métabolisme)</term>
<term>Phytophthora infestans (pathogénicité)</term>
<term>Pliage des protéines (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Ubiquitin-protein ligases (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Phosphatidylinositol Phosphates</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Phosphates phosphatidylinositol</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Phytophthora infestans</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Facteurs de virulence</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Ubiquitin-Protein Ligases</term>
<term>Virulence Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Motifs</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Plant Immunity</term>
<term>Protein Folding</term>
<term>Protein Structure, Tertiary</term>
<term>Sequence Alignment</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Facteurs de virulence</term>
<term>Immunité des plantes</term>
<term>Modèles moléculaires</term>
<term>Motifs d'acides aminés</term>
<term>Pliage des protéines</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The oomycete pathogen Phytophthora infestans causes potato late blight, one of the most economically damaging plant diseases worldwide. P. infestans produces AVR3a, an essential modular virulence effector with an N-terminal RXLR domain that is required for host-cell entry. In host cells, AVR3a stabilizes and inhibits the function of the E3 ubiquitin ligase CMPG1, a key factor in host immune responses including cell death triggered by the pathogen-derived elicitor protein INF1 elicitin. To elucidate the molecular basis of AVR3a effector function, we determined the structure of Phytophthora capsici AVR3a4, a close homolog of P. infestans AVR3a. Our structural and functional analyses reveal that the effector domain of AVR3a contains a conserved, positively charged patch and that this region, rather than the RXLR domain, is required for binding to phosphatidylinositol monophosphates (PIPs) in vitro. Mutations affecting PIP binding do not abolish AVR3a recognition by the resistance protein R3a but reduce its ability to suppress INF1-triggered cell death in planta. Similarly, stabilization of CMPG1 in planta is diminished by these mutations. The steady-state levels of non-PIP-binding mutant proteins in planta are reduced greatly, although these proteins are stable in vitro. Furthermore, overexpression of a phosphatidylinositol phosphate 5-kinase results in reduction of AVR3a levels in planta. Our results suggest that the PIP-binding ability of the AVR3a effector domain is essential for its accumulation inside host cells to suppress CMPG1-dependent immunity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21821794</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>35</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.</ArticleTitle>
<Pagination>
<MedlinePgn>14682-7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1106002108</ELocationID>
<Abstract>
<AbstractText>The oomycete pathogen Phytophthora infestans causes potato late blight, one of the most economically damaging plant diseases worldwide. P. infestans produces AVR3a, an essential modular virulence effector with an N-terminal RXLR domain that is required for host-cell entry. In host cells, AVR3a stabilizes and inhibits the function of the E3 ubiquitin ligase CMPG1, a key factor in host immune responses including cell death triggered by the pathogen-derived elicitor protein INF1 elicitin. To elucidate the molecular basis of AVR3a effector function, we determined the structure of Phytophthora capsici AVR3a4, a close homolog of P. infestans AVR3a. Our structural and functional analyses reveal that the effector domain of AVR3a contains a conserved, positively charged patch and that this region, rather than the RXLR domain, is required for binding to phosphatidylinositol monophosphates (PIPs) in vitro. Mutations affecting PIP binding do not abolish AVR3a recognition by the resistance protein R3a but reduce its ability to suppress INF1-triggered cell death in planta. Similarly, stabilization of CMPG1 in planta is diminished by these mutations. The steady-state levels of non-PIP-binding mutant proteins in planta are reduced greatly, although these proteins are stable in vitro. Furthermore, overexpression of a phosphatidylinositol phosphate 5-kinase results in reduction of AVR3a levels in planta. Our results suggest that the PIP-binding ability of the AVR3a effector domain is essential for its accumulation inside host cells to suppress CMPG1-dependent immunity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yaeno</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Plant Science Center and Systems and Structural Biology Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hua</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chaparro-Garcia</LastName>
<ForeName>Angela</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schornack</LastName>
<ForeName>Sebastian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koshiba</LastName>
<ForeName>Seizo</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Satoru</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kigawa</LastName>
<ForeName>Takanori</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kamoun</LastName>
<ForeName>Sophien</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shirasu</LastName>
<ForeName>Ken</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>2LC2</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C562170">AVR3a protein, Phytophthora infestans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018129">Phosphatidylinositol Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D037521">Virulence Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.3.2.27</RegistryNumber>
<NameOfSubstance UI="D044767">Ubiquitin-Protein Ligases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14381-2</RefSource>
<PMID Version="1">21856948</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020816" MajorTopicYN="N">Amino Acid Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018129" MajorTopicYN="N">Phosphatidylinositol Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="Y">Plant Immunity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044767" MajorTopicYN="N">Ubiquitin-Protein Ligases</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D037521" MajorTopicYN="N">Virulence Factors</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21821794</ArticleId>
<ArticleId IdType="pii">1106002108</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1106002108</ArticleId>
<ArticleId IdType="pmc">PMC3167543</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2001 Feb 9;291(5506):1047-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21813644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Apr;18(4):1067-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Sep;47(5):687-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16856980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17220200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2007 Sep;274(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Nov 1;359(Pt 3):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11672432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):124-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Feb;20(2):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):356-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3312-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Mar;22(3):269-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 25;107(21):9909-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2010 Jun;12(6):705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Jul 23;142(2):284-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20655469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Dec;22(12):4031-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21189293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):653-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21348873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1272-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855950</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chaparro Garcia, Angela" sort="Chaparro Garcia, Angela" uniqKey="Chaparro Garcia A" first="Angela" last="Chaparro-Garcia">Angela Chaparro-Garcia</name>
<name sortKey="Kamoun, Sophien" sort="Kamoun, Sophien" uniqKey="Kamoun S" first="Sophien" last="Kamoun">Sophien Kamoun</name>
<name sortKey="Kigawa, Takanori" sort="Kigawa, Takanori" uniqKey="Kigawa T" first="Takanori" last="Kigawa">Takanori Kigawa</name>
<name sortKey="Koshiba, Seizo" sort="Koshiba, Seizo" uniqKey="Koshiba S" first="Seizo" last="Koshiba">Seizo Koshiba</name>
<name sortKey="Li, Hua" sort="Li, Hua" uniqKey="Li H" first="Hua" last="Li">Hua Li</name>
<name sortKey="Schornack, Sebastian" sort="Schornack, Sebastian" uniqKey="Schornack S" first="Sebastian" last="Schornack">Sebastian Schornack</name>
<name sortKey="Shirasu, Ken" sort="Shirasu, Ken" uniqKey="Shirasu K" first="Ken" last="Shirasu">Ken Shirasu</name>
<name sortKey="Watanabe, Satoru" sort="Watanabe, Satoru" uniqKey="Watanabe S" first="Satoru" last="Watanabe">Satoru Watanabe</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Yaeno, Takashi" sort="Yaeno, Takashi" uniqKey="Yaeno T" first="Takashi" last="Yaeno">Takashi Yaeno</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraEffectorV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraEffectorV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21821794
   |texte=   Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21821794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraEffectorV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Nov 17 23:19:50 2020. Site generation: Tue Nov 17 23:20:37 2020